1204-01

Printed Pages: 12

B.Sc. Part-I (Hons.) Examination, 2019

MATHEMATICS

[SUBSIDIARY]

[Paper : First]

[PPU-D-I (SUB)-MAT]

Time: Three Hours]

[Maximum Marks: 100

Note: The figure in the margin indicate full marks. Answer any six questions, selecting one from each group. Question no. 1 is compulsory.

Multiple choice question:

[2×10=20]

- (a) If $f: Q \rightarrow Q$ is a mapping given by f(x) = 2x + 3, then which of the following is true:
 - (i) f is injective but not surjective
 - (ii) f is surjective but not injective
 - (iii) f is bijective

1204-01/9000

(1)

[P.T.O.]

https://www.ppuponline.com

https://www.ppuponline.com

- (iv) f is neither injective nor surjective
- (b) The real part of $sin(log i^i)$ is:
 - (i) 1
 - (ii) -1
 - (iii) O
 - (iv) $\frac{1}{2}$
- (c) If A is any square matrix, then the value of A.adj A is:

https://www.ppuponline.com

- (i) det(A).I
- (ii) det(A).A
- (iii) $det(A).A^{-1}$
- (iv) $\frac{1}{\det(A)}$
- (d) The image of the point (2, 1, 3) in the plane x + 2y z + 2 = 0 is:

1204-01/9000

(2)

- (1) (1, 1, 4)
- (ii) (-1, 1, 4)
- (iii) (1, -1, 4)
- (iv) (1, 1, -4)
- (e) The direction cosines of a line which makes equal angle with coordinate axes are :

(i)
$$\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$$

(ii)
$$\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}$$

https://www.ppuponline.com

1204-01/9000

(iii)
$$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}$$

(iv)
$$\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$$

(f) The equation of the plane through the point (1, 0, -1) and perpendicular to the line segment joining points (3, 2, 5) and (4, 5, 2) is:

(i)
$$x - 3y - 3z + 4 = 0$$

https://www.ppuponline.com

[P.T.O.]

https://www.ppuponline.com

ii)
$$x + 3y + 3z - 4 = 0$$

(iii)
$$x + 3y - 3z - 4 = 0$$

(iv)
$$x + 3y - 3z + 4 = 0$$

- (g) Which of the following series is not convergent?
 - (i) $\sum_{n=1}^{\infty} \frac{1}{n!}$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{(\log n)^2}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{4^n}{n!}$$

(iv)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$$

- (h) In the group of non zero rational numbers under the binary operation 0 given by $a \circ b = \frac{ab}{3}$, the inverse of 9 is :
 - (i)

1204-01/9000

(4)

https://www.ppuponline.com

- (ii) $\frac{1}{9}$
- (iii) 3
- (iv) $\frac{1}{3}$
- (i) If $y = \tan^{-1} x$, then $(1+x^2) \frac{d^2 y}{dx^2}$ is equal to:
 - (i) $\frac{dy}{dx}$
 - (ii) $2x\frac{dy}{dx}$
 - (iii) $x \frac{dy}{dx}$
 - (iv) $-2x\frac{dy}{dx}$
- (j) The set of all feasible solutions of a L.P.P. is alwaysa :
 - (i) Convex set

1204-01/9000

(5)

[P.T.O.]

- (ii) Open set
- (iii) Closed set
- (iv) Unbounded set

GROUP-A

[16]

https://www.ppuponline.com

- 2. (a) For any two sets A and B, prove that $A = (A \cap B) \bigcup (A B).$
 - (b) If $f: X \to Y$ be a mapping and A, B be two subsets of X, then show that $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (a) Define a group. Show that for a given positive integer n, nth root of unity form a multiplicative group.
 - (b) Define integral domain and give an example of an integral domain which is not a field.

GROUP-B

[16]

4. (a) If A and B are square matrices of same order and A is symmetric, then show that B^TAB is also symmetric.

1204-01/9000

(6)

https://www.ppuponline.com

https://www.ppuponline.com

https://www.ppuponline.com

- Find the inverse of the matrix $\begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ (b)
- Define rank of a matrix and find the rank of the (a) 5.

matrix
$$\begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 2 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

Solve the L.P.P. graphically: (b)

$$\text{Max} \quad \mathcal{Z} = 6x_1 + 5x_2$$

subject to
$$x_1 + x_2 \le 10$$

$$2x_1 + x_2 \le 15$$

$$x_2 \le 8$$

$$x_1, x_2 \ge 0$$

GROUP-C

[16]

https://www.ppuponline.com

https://www.ppuponline.com

Show that any differentiable function is 6. (a) continuous. Give an example of a function

1204-01/9000

(7)

[P.T.O.]

- continuous on R but not differentiable exactly at two points.
- Define convergence of a sequence. Show that (b) the sum of two convergence sequences is also a convergence sequence.
- Using Demoivre's theorem prove that : 7.

$$sin 6\theta = 6 cos^5 \theta sin \theta - 20 cos^3 \theta sin^3 \theta + 6 cos \theta sin^3 \theta$$

Show that for $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$,

$$\tan \alpha = \alpha + \frac{\alpha^3}{3} + \frac{2}{15}\alpha^5 + \dots$$

[16] **GROUP-D**

- Find the condition that the line y = mx + c be a (a) 8. tangent line to the parabola $y^2 = 4ax$.
 - Show that the point of intersection of two mutually (b) perpendicular tangent lines to an ellipse always lies on a circle.
- Show that there are at most four normals be (a) 9. drawn to a hyperbola from any point.

1204-01/9000

(8)

https://www.ppuponline.com

(b) Find the condition under which a general equation of second degree in two variable represent a circle.

[16]

- 10. (a) Find the angle between two diagonals of a cube.
 - (b) If α , β , γ , δ be angles made by a given line with four diagonals of a cube, then show that

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = \frac{8}{3}.$$

- 11. (a) Find the equation of the plane through the point (-1, 3, 1) and perpendicular to the line 2x + 3y + 4z = 5, 3x + 4y + 5z = 6.
 - (b) Find the equation of the plane containing the lines

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
 and $\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$.

----- X -----

https://www.ppuponline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रूपये पार्य,

Paytm or Google Pay 🕏

1204-01/9000

(9)

https://www.ppuponline.com